IS361 Database

Chapter 7 Normalization
1. Decompose a relation into BCNF.
2. Define the term: Lossless-join decomposition - for all database instances that satisfy the specified functional dependencies and other constraints, if we project r onto R1 and R2, and compute the natural join of the projection results, we get back exactly r.
3. Questions such as: “the decomposition of R into R1 and R2 are all in 3NF or BCNF”

4. Given a relation and functional dependencies determine the functional dependency minimal cover.

5. Given a relation and functional dependencies determine a candidate key.
6. Are the decompositions of R into R1, R2 and R3 are all in BCNF?

R = (A, B, C, D, E, F)

F = {A (BCDEF, BC (ADEF, B (F, D (E, D (B}

R1 = (B, F)

R2 = (A, B, C, D)

R3 = (D, E)

This is not in BCNF because:

D (B violates BCNF because is not a superkey of R3

We must decompose the relations to get BCNF the decomposed relations are:

R1 = (B, F)

R2 = (D, E)

R3 = (A, C, D)

R4 = (B, D)

7. Are the decompositions of R into R1, R2 and R3 are all in 3NF?

R = (A, B, C, D, E, F)

F = {A (BCDEF, BC (ADEF, B (F, D (E, D (B}

R1 = (B, F)

R2 = (A, B, C, D)

R3 = (D, E)

This is in 3NF. Each relation contains a superkey, e.g. R1 it’s superkey is B,

For R2 the superkey is A, and for R3 the superkey is D.

D (B satisfies 3NF

8. Given the following relation R and the functional dependencies F determine a minimal cover.

R = (A, B, C, D, E, F, G, H)

F = {A (C, AC (D, E (AD, E (F}
C is extraneous in AC (D because of A (C
(gives us A (D)

AA (D implies A (D

D is extraneous in E (AD because of A (D
(gives us E (A)

E (AA implies E (A

Combine A (C and A (D

Combine E (A and E (F

Fc = {A (CD, E (AF}
9. Given the following relation R and its set of functional dependencies F determine a candidate key for R.

R = (A, B, C, G, H, I)

F = {A (B, A (C, CG (H, CG (I, B (H}

(AG)+

result = AG
result = ABCG
(A (C and A (B)
result = ABCGH
(CG (H and CG (AGBC)
result = ABCGHI
(CG (I and CG (AGBCH)
Chapter 8 Triggers, Authorization, Audit Trails, Views

1. As in the homework, given an SQL statement would a trigger need to be written to enforce a functional dependency.
2. Discuss what an audit trail is in regards to a database management system. – An audit trail is a log of all changes (inserts/deletes/updates) to the database along with information such as which user performed the change and when the change was performed. This sort of thing aid’s security in several ways.
3. Discuss authorization, roles and views in a database management system.
Chapter 12 Indexes
1. What is the purpose of indexes? Define, describe and explain how dense and sparse indexes are used in a database management system. – Indexes are used much in the same way an index in a book is used. Indexing mechanisms used to speed up access to desired data.
a. Dense Indexes – An index record appears for every search-key value in the file. In a dense clustering index, the index record contains the search-key value and a pointer to the first data record with that search-key value. The rest of the records with the same search-key value would be stored sequentially after the first record, since, because the index is a clustering one, records are sorted on the dame search key. Dense index implementations may store a list of pointers to all records with the same search-key value; doing so is not essential for clustering indicies.
b. Sparse Indexes – An index record appears for only some of the search-key values. As is true in dense indicies, each index record contains a search-key value and a pointer to the first data record with that search-key value. To locate a record, we find the index entry with the largest search-key value that is less than or equal to the search-key value for which we are looking. We start at the record pointed to by that index entry, and follow the pointers in the file until we find the desired record.
2. Can you have two primary indexes on the same relation for different search keys? Explain.

3. Discuss and define the differences between a sparse and dense index. – Sparse indexes located the largest search key value that is less than or equal to the search-key value that we are looking for. Dense indexes locate the first one, and the rest are listed sequentially.
4. Discuss and define the B+ and B-tree index structure. –
a. B+-Trees – the most widely used of several index structures that maintain their efficiency despite insertion and deletion of data. Takes the form of a balanced tree in which every path from the roof of the tree to a leaf on the tree is of the same length. Each non-leaf node has between [n/2] and n children where n is fixed for the particular tree.

b. B-Trees – Similar to B+-trees. The primary distinction between the two approaches is that the b-tree eliminates the redundant storage of search-key values.
Chapter 15 Transactions
1. Define and discuss the ACID properties in regards to transactions.

a. Atomicity – Ensures that either all the effects of a transaction are reflected in the database, or none are; a failure cannot leave the database in a state where a transaction is partially executed.
b. Consistency – Ensures that, if the database is initially consistent, the execution of the transaction (by itself) leaves the database in a consistent state.
i. Consistent State – At the start of the current transaction, the database, while possibly processing a transaction, is not in a state where part of a transaction is available for use. (HOPEFULLY!)
c. Isolation – Ensures that concurrently executing transactions are isolated from one another, or that each has the impression that no other transactions are executing concurrently with it.

d. Durability – Ensures that, once a transaction has been committed, that transaction’s updates do not get lost, even if there is a system failure.
2. Define and discuss how the two-phase locking protocol works. – Requires that each transaction issue lock and unlock requests in two phases:
a. Growing Phase – A transaction may obtain locks, but may not release any lock.
b. Shrinking Phase – A transaction may release locks, but may not obtain any new locks.

· Initially, a transaction is in the growing phase. The transaction acquires locks as needed. Once the transaction releases a lock, it enteres the shrinking phase, and it can issue no more lock requests. The two phase locking protocol ensures conflict serializability.

· Consider any tranaction. The point in the schedule where the transaction has obtained its final lock (end of the growing phase) is called the lock point of the transaction. Transactions can be ordered according to their lock points - this ordering is a serializability ordering for the transactions.
3. Define and discuss the five transactions states a transaction can be in.
a. Active – The initial state; the transaction stays in this state while it is executing.
b. Partially committed – after the final statement has been executed.

c. Failed – after the discovery that normal execution can no longer proceed.

d. Aborted – after the transaction has been rolled back and the database has been restored to its state prior to the start of the transaction.

e. Committed – after successful completion.
· In the absence of failures, all transactions complete successfully., but a transaction may not always complete its execution successfully. This is called an ‘aborted transaction.’

· Any changes that the aborted transaction made must be undone. This is called the ‘rollback.’ It is part of the responsibility of the recovery scheme to manage transaction aborts.

· A transaction that completes its execution is said to be committed. A committed transaction that has performed updates transforms the database into a new consistent state, which must persist.
· Committed transaction effects cannot be undone by aborting. The only way to undo these effects is to execute a compensating transaction, which is not always possible.

4. What is a transaction? - a unit of program execution that accesses and possibly updates various data items.
5. What is cascading rollback? - a single transaction failure leads to a series of transaction rollbacks of anything done after the start of the failed transaction.
Chapter 16 Concurrency Control
1. Discuss and define the two types of locks? (exclusive and shared)
a. Exclusive – If a transaction T has obtained an exclusive-mode lock (denoted by X) on item Q, then T can both read and write Q. (Exclusive folders can only be seen and written by certain users)
b. Shared – If a transaction, T has obtained a shared-mode lock (denoted by S) on item Q, then T can read, but cannot write Q. (Shared folder can be seen by everyone, but not written to except by certain people)
2. Explain how two processes can become deadlocked. – Two processes can become deadlocked when each transaction is waiting for the other to complete so it can finish.
3. When deadlock occurs what must be done to remove deadlock? – If a system does not employ some protocol that ensures deadlock freedom, then a detection and recover scheme must be used. If a deadlock has occurred, then the system must attempt to recover from the deadlock. To do so, the system must:
a. Maintain information about the current allocation of data items to transactions, as well as many outstanding data item requests.

b. Provide an algorithm that uses this information to determine whether the system has entered a deadlock state.

c. Recover from the deadlock when the detection algorithm determines that a deadlock exists.

i. Selection of a Victim: Given a set of deadlocked transactions, we must determine which transaction(s) to roll back to break the deadlock. We should roll back those transactions that will incur the minimum cost.
ii. Rollback: Once we have decided that a particular transaction must be rolled back, we must determine how far this transaction should be rolled back. Simplest solution: Total rollback. Abort the transaction and restart it. But rolling it back only as far as necessary to break the deadlock is more effective.

iii. Starvation: In a system where the selection of victims is based primarily on cost factors, it may happen that the same transaction is always picked as a victim. As a result this transaction never completes its designated task, then there is starvation. We must ensure that a transaction can be picked as a victim only a finite number of times.

Chapter 17 Recovery
1. What types of failures can occur that would affect a database management system?
a. Transaction Failure: There are two types of errors that may cause a transaction to fail:

i. Logical error: The transaction can no longer continue with its normal execution because of some internal condition, such as bad input, data not found, overflow, or resource limit exceeded

ii. System error: the system has entered an undesirable state (like deadlock), as a result of which a transaction cannot continue with its normal execution. The transaction, however, can be re-executed at a later time.

b. System crash: There is a hardware malfunction, or a bug in the database software or the operating system, that causes the loss of the content of volatile storage, and brings transaction processing to a halt. The content of nonvolatile storage remains intact, and is not corrupted
c. Disk failure: a disk block loses its content as a result of either a head crash or failure during a data-transfer operation. Copies of the data on other disks, or archival backups on tertiary media, such as tapes, are used to recover from the failure.

2. Define and discuss the log-based recovery technique to recover from failures with checkpoints. – To reduce the types of overhead that include time consuming search processes and lengthy transaction redos, checkpoints are used in recovery. Checkpoints require this sequence:
a. Output onto stable storage all log records currently residing in main memory.

b. Output to the disk all modified buffer blocks.

c. Output onto stable storage the log record <checkpoint>.

Transactions are not allowed to perform any update actions, such as writing to a buffer block or writing a log record while a checkpoint is in progress. The presence of <checkpoint> allows the system to streamline its recovery procedure.
3. Define and discuss checkpoints. – A checkpoint record is written into the log periodically when the system writes out to the data base on disk all DBMS buffers that have been modified. It makes a note of where your consistent database was so if you have a serious crash, it can be rolled back to the checkpoint. The result is that all transactions that have their <commit> entries in the log before the <checkpoint> entry do not need to have their write operation redone in the event of a crash
